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ABSTRACT

As an emerging privacy-preserving approach to leveraging cross-
platform user interactions, vertical federated learning (VFL) has
been increasingly applied in recommender systems. However, vanilla
VFL is only applicable to overlapped users, ignoring potential uni-
versal interest patterns hidden among non-overlapped users and
suffers from limited user group benefits, which hinders its applica-
tion in real-world recommenders.

In this paper, we extend the traditional vertical federated recom-
mendation problem (VFR) to a more realistic Fully-Vertical feder-
ated recommendation setting (Fully-VFR) which aims to utilize all
available data and serve full user groups. To tackle challenges in
implementing Fully-VFR, we propose a Retrieval-enhanced Verti-
cal Federated recommender (ReFer ), a groundbreaking initiative
that explores retrieval-enhanced machine learning approaches in
VFL. Specifically, we establish a general "retrieval-and-utilization"
algorithm to enhance the quality of representations across all par-
ties. We design a flexible federated retrieval augmentation (RA)
mechanism for VFL: (i) Cross-RA to complement field missing and
(ii) Local-RA to promote mutual understanding between user groups.
We conduct extensive experiments on both public and industry
datasets. Results on both sequential and non-sequential CTR pre-
diction tasks demonstrate that our method achieves significant
performance improvements over baselines and is beneficial for all
user groups.
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1 INTRODUCTION

Recommender system is an essential application in information
retrieval [31, 44], which is quite ubiquitous in our daily lives, from
reading news and watching movies to reviewing restaurants, on-
line shopping, and identifying points of interest (POIs). In this
context, user behaviors are recorded by many kinds of service plat-
forms, which are diverse and complementary to depict user interests
in different domains [43, 50]. Collectively leveraging these multi-
platform user behaviors is helpful to achieve more fine-grained and
comprehensive user interest modeling, which is beneficial to many
tasks. However, it is nearly impossible to directly share raw data
across platforms due to data privacy regulations [42] and commer-
cial confidentiality among service agencies.

To address these issues, vertical federated learning [5, 30, 41, 45]
has been adopted to utilize cross-platform attributes without com-
promising user privacy. It has been explored in various recommen-
dation tasks [47], such as click-through prediction, conversion rate
prediction, and item recommendation [7, 9, 12, 13]. In a typical
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Figure 1: Conventional VFR setting only considers the over-

lapped dataset, suffering from a) incomplete user interest

awareness and meanwhile b) cannot serve non-overlapped

users. While extending the problem of VFR to Fully-VFR

that serves for both user sets,we propose a retrieval-based

federated framework to solve this problem.

VFL process, participants first execute a Private Set Intersection
(PSI [33]) to obtain the aligned (i.e., overlapped) dataset and then
perform distributed training. This essentially limits the models to
only train and infer on aligned users. This constraint of narrowed
data scope renders VFL impractical in two ways:
• Incomplete interest awareness: Aligned users for dissimilar
businesses are often limited and constitute only a small portion
of the user population. This reduced training set size can increase
the risk of overfitting and result in low-quality embeddings and
hidden representations, especially in sparse, high-dimensional
recommendation datasets. In particular, item interactions of un-
aligned users are completely ignored, despite their potential to
enhance item representations.

• helpless for unaligned users: The intrinsic field missing in
passive parties makes it impossible for a federated model to make
predictions for unaligned users, further undermining VFL’s prac-
ticability. If a participant holds more unaligned users than aligned
users, or weights unaligned users more heavily in their business,
there may be insufficient motivation to join the federation. The
expected performance gains on the aligned user set are not useful
in this case. Although default filling with default values can alle-
viate this problem, it is superficial and fails to offer a meaningful
information supplement.

In this paper, we propose a retrieval-enhanced approach named
ReFer to tackle these issues (as depicted in Figure 1). Specifically,
we design two kinds of retrieval augmentation strategies:
• Cross-RA for field missing For a target user in the unaligned
user set, we retrieve relevant users in the aligned user set (only
depending on their characters in the active party’s domain) and
then use the corresponding features in passive party’s domain as
supplemental features to fill the information missing gap.

• Local-RA for mutual understanding To enhance mutual cor-
relation learning among aligned and unaligned users, we further
retrieve relevant users in the entire user set for each user to
enhance representations in the active party’s feature domain.

To achieve these strategies, we devised a two-stage federated re-
trieval mechanism to conduct privacy-preserved distributed data

Table 1: The data utilization scopes of different methods.

“UN-A” represents the unaligned data of party A, and “AL-

B” represents the B-side part of aligned data. The text in

brackets indicates how the method addresses the issue of

missing B-side fields in inference.

Training Stage Serving Stage

Method UN-A AL-B UN-A AL-B

Local ✓ ✓
Fed ✓ ✓

FTL ✓ ✓ ✓
FPD ✓ ✓ ✓

Fed-Fill ✓ ✓ ✓(zero-filling) ✓
FedCVT ✓ ✓ ✓(hidden-syn) ✓
ReFer ✓ ✓ ✓(raw-factual) ✓

augmentation. And proposed attention-based fusion modules to
learn enhanced representations. With ReFer , training, and infer-
ence can be carried out for the full user set, while representation in
all domains can be enhanced. In summary, our contributions are:

(1) We proposed the first retrieval-based algorithm for vertical
federated learning to enable full user set modeling and enhanced
representation learning.

(2) We proposed a general and effective “retrieve-and-fusion” frame-
work to achieve both Local-side RA and Cross-side RA, which
systematically enhances all parties’ representation and pro-
motes better predictions.

(3) We conducted extensive experiments on both public and in-
dustry datasets under both sequential and non-sequential click-
through rate estimation tasks. The result shows that our method
achieves significant performance lift against baseline models.

2 RELATEDWORK

Retrieval Enhanced Machine Learning: The idea of retrieval-
enhancementmachine learningwas first introduced in open-domain
question answering [6, 15, 18, 21, 38] and have since been contin-
uously adopted in large language modeling [3, 10, 19–21, 35, 37].
Inspired by these success of retrieval enhancement in natural lan-
guage processing (NLP), [2, 26, 34] have adopted it in recommen-
dation tasks. They design tailored retrievers for the recommender
to search for relevant samples or users for data augmentation, thus
utilizing cross-sample correlation to enhance user representation.
For a more comprehensive understanding, interested readers can
refer to a recent survey paper [48]. Our paper focuses on utilizing
REML to address the challenges associated with VFL, which has
not been considered in the works mentioned above.

Vertical Federated Recommendation Despite the popular-
ity of designing federated recommender systems in horizontal FL
setting [27, 28, 32, 47], such efforts on vertical FedRec [47] are
still unsatisfactory [30, 45, 46]. With the similar purpose of tack-
ling the field missing in VFL, FedCVT [17] complements both the
missed representations and labels for unaligned samples. While this
solution comprehensively uses all available data, it is computation-
ally inefficient and not tailored for recommendation tasks. Three
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distillation-based works [23, 24, 36] propose to decouple the depen-
dence of online serving with federation and meanwhile enable full
user set inference. However, their goal of achieving local serving
bans the use of B-side inputs completely for prediction, creating a
significantly different and more challenging ill-pose setting from
ours. [46] proposes a novel diffusion-based alternative training algo-
rithm to utilize the unaligned data from active parties. However, its
focus is only on improving performance for aligned samples, and it
does not include unaligned samples in federated serving. A detailed
comparasion of these works are summarized in Table 1. Despite
their differences, our retrieval mechanism can be incorporated into
these works to further enhance their performance.

3 PRELIMINARY

3.1 Concepts and Problem Formulation

We consider a typical VFR (Vertical Federated Recommender) sys-
tem [5, 41] with an active party A = (U𝐴,I𝐴,X𝐴,Y𝐴) and a
passive party B = (U𝐵,I𝐵,X𝐵), where U = {1, 2, . . . , |U|}, I =

{1, 2, . . . , |I |} are id sets of users and items, Y𝐴 = {0, 1} |U𝐴 |× |I𝐴 |

is the label set of user-item interactions from the active party, and
X = {x𝑖 𝑗 }𝑖, 𝑗∈U×I is the feature set of interactions for each party.
The active party is a recommender system that defines the learning
task and holds labels and features, while the passive party is a data
provider offering extra features about users, items, or contexts.

Definition 3.1 (Aligned Dataset). Given the aligned user set
U𝑎𝑙 = U𝐴 ∩ U𝐵 and the union item set I∪ = I𝐴 ∪ I𝐵 of two
parties, the aligned dataset is defined as D𝑎𝑙 = {D𝐴

𝑎𝑙
,D𝐵

𝑎𝑙
}, where:

D𝐴
𝑎𝑙

= {(x𝐴, 𝑦𝐴)}𝑖 𝑗 ,D𝐵
𝑎𝑙

= {x𝐵}𝑖 𝑗 ; 𝑖 ∈ U𝑎𝑙 , 𝑗 ∈ I∪ (1)

Here x𝐴
𝑖 𝑗

∈ X𝐴 and x𝐵
𝑖 𝑗

∈ X𝐵 are input vectors from two parties.
Their field structure is introduced in detail in section 3.2.

Definition 3.2 (VFR Problem). A VFR system aims to train a rec-
ommendermodel by exploiting the aligned datasetD𝑎𝑙 = {D𝐴

𝑎𝑙
,D𝐵

𝑎𝑙
}

to make more comprehensive predictions for aligned users U𝑎𝑙 .
The optimization goal and inference process are defined as:

arg min
𝜃𝐴,𝜃𝐵

L(Y𝐴, 𝑓 𝐹𝑒𝑑
𝜃𝐴,𝜃𝐵

(U𝑎𝑙 ,I∪ |D𝐴
𝑎𝑙
, 𝑧 (D𝐵

𝑎𝑙
))) (2)

𝑦𝐴𝑖 𝑗 =𝑓
𝐹𝑒𝑑 (𝑖, 𝑗 |x𝐴𝑖 𝑗 , 𝑧 (x

𝐵
𝑖 𝑗 )),∀𝑖, 𝑗 ∈ U𝑎𝑙 × I∪ (3)

where L is the task loss function and 𝑓 𝐹𝑒𝑑
𝜃𝐴,𝜃𝐵

is the distributed feder-
ated model partially owned by each party(see section 3.3 for details).
𝑧 (·) is the data processing function transferring intermediate re-
sults between parties instead of the raw data. 𝑦𝐴

𝑖 𝑗
is the prediction.

Both the model and data are private and invisible to other parties.

Definition 3.3 (Unaligned Dataset1). Given the unaligned users
U𝑎 = U𝐴 −U𝑎𝑙 of party A, the unaligned dataset is defined as

D𝐴
𝑢𝑛 = {(x𝐴, 𝑦𝐴)𝑖 𝑗 |𝑢 ∈ U𝑎, 𝑗 ∈ I𝐴} (4)

1Here we refer the term in particular to party A’s unaligned dataset. While one can
analogously define U𝑏 and unaligned dataset D𝐵

𝑢𝑛 for party B, they are naturally
excluded in our setting since they are out of the business service of the active party.
We leave this minor extension as future work.

In practice, D𝑎𝑙 is usually limited, and sometimes |D𝐴
𝑎𝑙
| ≪

|D𝐴
𝑢𝑛 |, which restricts the effectiveness of VFR [17, 23, 24, 46]. Be-

sides, VFR is not able to serve unaligned users regardless of its
necessity and importance in real business. Thus, we define a more
general problem setting:

Definition 3.4 (fully-VFR Problem). A fully VFR system aims
to utilize the full labeled dataset D𝑓 𝑢𝑙𝑙 = {D𝐴

𝑢𝑛,D𝐴
𝑎𝑙
,D𝐵

𝑎𝑙
} to build

a recommender model available for all users U𝐴 = {U𝑎,U𝑎𝑙 } of
the active party to get better performance. The optimization goal
and inference process are defined as :

arg min
𝜃𝐴,𝜃𝐵

L(Y𝐴, 𝑓 𝐹𝑒𝑑
𝜃𝐴,𝜃𝐵

(U𝐴,I∪ |D𝐴
𝑢𝑛,D𝐴

𝑎𝑙
, 𝑧 (D𝐵

𝑎𝑙
))) (5)

𝑦𝐴𝑖 𝑗 =

{
𝑓 𝐹𝑒𝑑 (𝑖, 𝑗 |x𝐴

𝑖 𝑗
, 𝑧 (x𝐵

𝑖 𝑗
)), ∀𝑖, 𝑗 ∈ U𝑎𝑙 × I∪,

𝑓 𝐹𝑒𝑑 (𝑖, 𝑗 |x𝐴
𝑖 𝑗
, 𝑧′ (D𝐵

𝑎𝑙
)), ∀𝑖, 𝑗 ∈ U𝑎 × I𝐴 .

(6)

where 𝑧′ (·) is an alternative privacy-preserved processing func-
tion that extract 𝑖, 𝑗-relative information to assist the inference
for unaligned users. For example in Table 1, Fed-Fill, FedCVT,
and ReFer employ different strategies to implement this function,
whereas FPD and FTL leave it as a null function.

As a core difference, VFR aims to learn a scoring function only
work for aligned users, while fully-VFR aims to learn a better
scoring function work for all users and targeted to perform better
than both local model and VFR model.

3.2 Data Scenarios and Task Types

3.2.1 Attr-VFR Task. Given two parties with identical item set
I𝐴 = I𝐵 = I∪, the attribute-VFR task aims to provide a better
scoring prediction for a pair of user and candidate item (𝑖, 𝑗) by
utilizing additional data attributes from the passive party. Thus,
a federated sample is a triplet (x𝐴

𝑖 𝑗
, 𝑦𝐴
𝑖 𝑗
, x𝐵
𝑖 𝑗
) as

x𝐴𝑖 𝑗 = [u𝐴𝑖 , v
𝐴
𝑗 , c

𝐴
𝑖 𝑗 ],∀𝑖 ∈ U𝐴; x𝐵𝑖 𝑗 = [u𝐵𝑖 , v

𝐵
𝑗 , c

𝐵
𝑖 𝑗 ],∀𝑖 ∈ U𝑎𝑙 (7)

where 𝑗 ∈ I∪, and u, v, c ∈ X are concatenated vectors of values in
attribute subsets of users, items, and context information. Attr-VFR
stems from industry vertical federated advertising scenarios [46].

3.2.2 Seq-VFR Task. Given two parties with non-identical item
sets I𝐴 ≠ I𝐵 , we define the behaviour-sequence-VFR task which
aims to improve the scoring for a time-identified pair of user and
candidate item (𝑖, 𝑗, 𝑡) by leveraging additional cross-view user
behavior sequence from the passive party, where

x𝐴𝑖 𝑗𝑡 = [u𝐴𝑖 , v
𝐴
𝑗 , s

𝐴
𝑖𝑡 ],∀𝑖 ∈ U𝐴; x𝐵𝑖𝑡 = [u𝐵𝑖 , s

𝐵
𝑖𝑡 ],∀𝑖 ∈ U𝑎𝑙 (8)

s𝐴𝑖𝑡 = {v𝐴
𝑙
|𝑙 ∈ I𝑖,𝑡

′

𝐴
}; s𝐵𝑖𝑡 = {v𝐵

𝑙
|𝑙 ∈ I𝑖,𝑡

′

𝐵
}; 𝑡 ′ ≤ 𝑡 (9)

where 𝑗 ∈ I𝐴 is the candidate item, s𝐴
𝑖𝑡
and s𝐵

𝑖𝑡
are the time-ordered

user behaviour sequence vector, I𝑖,𝑡
′

𝐴
and I𝑖,𝑡

′

𝐵
are the item index

sets interacted by user 𝑖 before timestamp 𝑡 in two domains. Note
that the candidate item always comes from party A, while the item
vector in the user behavior sequence comes from two parties. The
potential for performance improvement derives from the diversity
of user behavior sequences. Seq-VFR is a natural extension from
the centralized sequential behavior CTR task [51] into a federated
and multi-view setting.
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Figure 2: ReFer enables full-set user training and inference

by enhancing representation learning on all parties. It con-

tains a highly flexible federated retrieval mechanism and

query-aware federated fusion modules.

3.3 Backbone Model: Vertical SplitNN

We follow the typical vertical Split Neural Network(SplitNN) [40] as
the backbone model. Specifically, each party holds a bottom model
(e.g., 𝑓𝐴, 𝑓𝐵 ) for extracting hidden representations, and the active
party additionally holds a top model 𝑔𝐴 to aggregate two sides of
representations to make predictions 𝑦 and computes loss L(𝑦,𝑦).
As like

h𝐴𝑖 𝑗 = 𝑓𝐴 (x
𝐴
𝑖 𝑗 ;𝜃

1
𝐴), h

𝐵
𝑖 𝑗 = 𝑓𝐵 (x

𝐵
𝑖 𝑗 ;𝜃𝐵) (10)

𝑦𝑖 𝑗 = 𝑓
𝐹𝑒𝑑
𝜃𝐴,𝜃𝐵

(x𝐴𝑖 𝑗 , x
𝐵
𝑖 𝑗 ) = 𝑔𝐴 (h

𝐴
𝑖 𝑗 , h

𝐵
𝑖 𝑗 ;𝜃

2
𝐴) (11)

where 𝜃𝐴 = {𝜃1
𝐴
, 𝜃2
𝐴
}. Note that h𝐴 and h𝐵 are distributively com-

puted in each party’s server. Once h𝐵 is ready, it will be sent to
party A across the network. In the backward pass, the gradient
g𝐵 = ∇h𝐵

L of h𝐵 will be sent to party B for subsequent backward
pass and parameter updates. Only hidden representation h𝐵 and
corresponding gradient g𝐵 are shared during training, thus original
data is never directly exposed. We consider another line of security-
focused works [1, 22, 49] complementary to us and we focus on the
aspect of effectiveness.

4 METHODOLOGY

As depicted in Figure 2, the overall framework is two-staged, con-
sisting of (1) Federated Retrieval Augmentation and (2) Federated
Retrieval Utilization.

4.1 Hierarchical Federated Retrieval

Given a query sample x𝐴
𝑖 𝑗
, 𝑖, 𝑗 ∈ U𝐴 × I𝐴 from the active party A,

the federated retrieval R aims to return 𝐾 relevant augmentation
samples {x𝑘,𝑗

𝐴
}𝐾
𝑘∈R(𝑖 ) and {x𝑙, 𝑗

𝐵
}𝐾
𝑙∈R′ (𝑖 ) for both parties. The two

sub-processes that retrieve data from two parties are called the
Local-RA and Cross-RA. To implement an efficient and privacy-
preserving retrieval mechanism that adheres to the principle of

Aligned time arrow

…

Before Query Occur
Top-K user ids

Query

① User Retrieval ② Sample Retrieval
Results

Active Party Passive Parties

items

Figure 3: The federated retrieval process for cross-party re-

trieval augmentation (Cross-RA).

VFL, we divide the overall retrieval process R into two stages of
user retriever R𝑢 and sample retriever R𝑠 where

R(𝑖, 𝑗, 𝑡) = 𝑅𝑠 (𝑅𝑢 (𝑖;E), 𝑗, 𝑡 ;D𝐴,D𝐵
𝑎𝑙
) (12)

Here R𝑢 and R𝑠 denote the user and sample retriever functions
respectively. E is the parameter of R𝑢 while R𝑠 is a non-parametric
function. Both retrieval stages are conducted locally within each
party to avoid cross-party raw data transfer, thereby ensuring pri-
vacy preservation and efficiency. Besides, only a subset of user-ids
from the aligned user set and the interaction time of query item 𝑗 are
transferred across parties. This information is common knowledge
to both parties and involves minimal communication burden.

4.1.1 In-Local User Retrieval. Given a query user id 𝑖 ∈ U𝐴 , a
candidate user-id pool P and a similarity function 𝑠𝑖𝑚(·), the user
retriever in (and only in) the active party returns the ids of the
top-𝐾 similar users of 𝑖 from P, as like

Ũ𝑖
P = R𝑢 (𝑖;E(P)); |Ũ𝑖

P | = 𝐾 (13)

s.t. 𝑠𝑖𝑚(E𝑖 , E𝑙 ) > 𝑠𝑖𝑚(E𝑖 , E𝑙 ′ ), ∀𝑙, 𝑙 ′ ∈ Ũ𝑖
P × (P − Ũ𝑖

P ) (14)

Here E ∈ R |U𝐴 |×𝑑 is a user embedding matrix, E(P) is the sub-
matrix indexed by P and E𝑖 is the embedding vector of user 𝑖 . Ũ𝑖

P
denotes for the result user id set. We separately use U𝐴 and U𝑎𝑙

as candidate pools for Local-RA and Cross-RA, and corresponding
result sets are denoted as Ũ𝑖

𝐴
and Ũ𝑖

𝑎𝑙
. The underlying reasons are

elaborated as follows.

• Local-RA with P = U𝐴

• availability: The ultimate goal of Local-RA is to obtain data
from X𝐴 , which is available for all users. All users are useful
candidates for this purpose.

• purpose: Employing the complete set U𝐴 as a candidate pool
enables mutual retrieval between aligned and unaligned user
sets. It ensures that regardless of the origin of the query (e.g.,
from U𝑎 or U𝑎𝑙 ), relevant users from the other set always
stand a chance to be retrieved. When this strategy is further
incorporated into the fusion learning module, it enhances mu-
tual comprehension between user groups and alleviates the
group bias.

• Cross-RA with P = U𝑎𝑙

• availability: The ultimate goal of Cross-RA is to obtain data
from X𝐵 , which is exclusively available to aligned users. Thus,
only aligned users are available candidates for this purpose.
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• purpose: For an unaligned user, we use similar aligned users as
a bridge to accessX𝐵 , thereby addressing the field missing prob-
lem in the raw data space. For an aligned user, augmentation
with similar aligned users enables the utilization of cross-user
correlation in field domain X𝐵 , which benefits representation
learning.

4.1.2 Construction of UserQuery Embedding. To ensure se-
mantically meaningful retrieval, it’s crucial to use embedding vec-
tors that accurately capture user similarity. Just as a pre-trained
BERT model in NLP is recognized as a general sentence encoder,
CF-based (collaborative-filtering) user embedding is acknowledged
as an effective representation to depict user interests.

To make a practical and effective solution that can be readily
applied in the industry, we pre-train an NCF model [11] to derive
user embedding, relying solely on A-side user-item interaction data
and excluding any side information.

argmin
E,Ψ

L(𝑦𝑖 𝑗 , 𝑓 𝑁𝐶𝐹 (𝑖, 𝑗 ;E,Ψ)); 𝑖, 𝑗 ∈ U𝐴 × I𝑟 (15)

where 𝑓 𝑁𝐶𝐹 is the NCF model, E denotes the user embedding table
and Ψ represents the set for all other model parameters. Only E is
used by user retriever R𝑢 . I𝑟 denotes the item set used for training
user retriever, which should be available in the active party but not
limited to be identical to I𝐴 .

We validate that the common id-based embedding is sufficiently
enough to derive meaningful retrieval results. Despite our specific
choice, our framework is flexible to other enhanced complex user
embeddings. For example, one can use a totally different item do-
main (e.g., I𝑟 ∩I𝐴 = ∅) for informative diversity, additionally utilize
side-information attributes X for richer representation, or adopt
other kind of model architectures (e.g., MF, NGCF) tailored for their
business. As a common and effective way in recommendation [2]
and NLP [10], we use the inner product to measure the similarity
between two users 𝑖 and 𝑙 :

𝑠𝑖𝑚(E𝑖 , E𝑙 ) = E𝑖 · E𝑙 (16)

And to efficiently get Top-𝐾 ranked users, we adopt the Maximum
Inner Product Search (MIPS) algorithm for accelerating the user
retrieval. It has a sub-linear time complexity O(𝑙𝑜𝑔( |P|)) over the
size of the candidate pool.

4.1.3 Distributed Sample Retrieval. Once we get the neighbor
user set Ũ𝑖

P for a given query triplet (𝑖, 𝑗, 𝑡), we use the sample
retriever to acquire top-𝐾 related items. For a neighbour user 𝑙 and
a target item domain 𝐶 ∈ {𝐴, 𝐵}, we have:

Ĩ𝑙𝑡𝐶 = R𝑠 (𝑙, 𝑡 ;I𝑙𝑡𝐶 ); 𝑙 ∈ Ũ𝑖
P , |Ĩ𝑙𝑡𝐶 | = 𝐾 (17)

s.t. 𝑠𝑖𝑚𝑙 ( 𝑗, 𝑗 ′) > 𝑠𝑖𝑚𝑙 ( 𝑗, 𝑗 ′′),∀𝑗 ′, 𝑗 ′′ ∈ Ĩ𝑙𝑡𝐶 × (I𝑙𝑡C − Ĩ𝑙𝑡𝐶 ) (18)

Here Ĩ𝑙𝑡
𝐶

⊂ I𝑙𝑡
𝐶

⊂ I𝑙
𝐶

⊂ I𝐶 is the result item subset, which is
interacted by user 𝑙 before timestamp 𝑡 and with top-𝐾 relevance
to the query item 𝑗 . Due to the privacy constraint of VFL and task
discrepancy between Attr-VFR and Seq-VFR, the sample retrieval
of Local-RA and Cross-RA varies in multiple aspects: (1) Local-RA
with accessible x𝐴

𝑖 𝑗
Local-RA is conducted in the active party, thus

with natural in-local data security, side-informationX𝐴 for both the
query item 𝑗 and candidate item set I𝑙𝑡

𝐴
are available to use in the
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Figure 4: Architecture of Fusion Modules.

sample retrieval process of Local-RA. Besides, the process of Local-
RA for both Attr-VFR and Seq-VFR remains the same. Furthermore,
no network communication is needed in this process. (2) Cross-RA
with unaccessible x𝐴

𝑖 𝑗
, x𝐵
𝑖 𝑗
Since Cross-RA is finally conducted in

the passive party, the side information of the query is unavailable.
x𝐴
𝑖 𝑗
can not be sent to party B for privacy protection reasons and

x𝐵
𝑖 𝑗

is naturally missed for unaligned users. For Attr-VFR, item
id 𝑗 is common knowledge between parties and is thus available
for retrieval. However, for Seq-VFR, only the interaction time 𝑡 is
available since the query item-id may not have corresponding field
information in party B and is also confidential for party A. During
the retrieval process, only the neighbor user set and interaction
time need to be communicated, which are non-private information
and involve a low communication payload.

In our experiment, we use the closeness in time as the measure
for item similarity, that is

𝑠𝑖𝑚𝑙 ( 𝑗, 𝑗 ′) = 𝑒 (𝑡𝑙 𝑗−𝑡𝑙 𝑗 ′ )
2

(19)

Our experimental results show that even Top-1 time-latest item re-
trieval can yield satisfactory outcomes. Moreover, it only consumes
log-level time complexity by adopting binary search on the time-
ordered item sequence. Despite our choice, ReFer is also flexible to
other kinds of sample retrievers.

4.2 Retrieval-Enhanced Modeling

4.2.1 Input Encoding. Once the retrieval is finished, we feed
each query sample together with its retrieved samples into the
model for enhanced learning. We reuse the embedding layer and
bottommodel (as stated in eq 10) to extract the initial representation
for retrieved samples:

H̃𝐴𝑖 𝑗 = 𝑓𝐴 (Z
𝐴
𝑖 𝑗 ), H̃

𝐵
𝑖 𝑗 = 𝑓𝐵 (Z

𝐵
𝑖 𝑗 ) (20)

Here Z and H̃ are 𝐾-row matrices denoting the raw input and
hidden features of query results for a given pair (𝑖, 𝑗).
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4.2.2 Query-Oriented Fusion. Now we can fuse the retrieved
samples in the feature space. For the A-side segments of retrieved
samples acquired by Local-RA, we use query-aware cross-attention
to get a more compact fused representation:

r𝐴𝑖 𝑗 = 𝑎𝑡𝑡𝑛𝐴 (h
𝐴
𝑖 𝑗 , H̃

𝐴
𝑖 𝑗W); ∀𝑖, 𝑗 ∈ U𝐴 × I𝐴 (21)

where W ∈ R𝑑𝐴×𝑑𝐴 is a learnable parameter adapting A-to-A
domain transformation between query and retrieval results. The
cross attention function 𝑎𝑡𝑡𝑛(a,B) for a vector a and a value matrix
B ∈ R𝐾×𝑑 is implemented as

𝑎𝑡𝑡𝑛(a,B) =
𝐾∑︁
𝑘=1

𝛼𝑘b𝑘 , 𝛼𝑘 =
𝑒𝑥𝑝 (a⊤B)∑𝐾
𝑗=1 𝑒𝑥𝑝 (a⊤B)

, (22)

where 𝛼𝑘 is the attention weight. The subscript “𝐴” in 𝑎𝑡𝑡𝑛𝐴 in-
dicates that the function is executed in party A. Analogously to
Local-RA, we use a similar approach for Cross-RA in the passive
party

r𝐵𝑖 𝑗 =

{
𝑎𝑡𝑡𝑛𝐴 (h𝐴𝑖 𝑗 , H̃

𝐵
𝑖 𝑗
· Φ), ∀𝑖, 𝑗 ∈ U𝑎 × I𝐴,

𝑎𝑡𝑡𝑛𝐵 (h𝐵𝑖 𝑗 , H̃
𝐵
𝑖 𝑗
· Θ), ∀𝑖, 𝑗 ∈ U𝑎𝑙 × I∪ .

(23)

where Φ ∈ R𝑑𝐵×𝑑𝐴 is the learnable parameter to capture B-to-A
cross domain transformation while Θ ∈ R𝑑𝐵×𝑑𝐵 is for B-to-B intra-
domain transformation. It’s worth noting that the modeling process
for user groups differs significantly in three aspects:
• Attention Key: we adopt h𝐴

𝑖 𝑗
for unaligned users but h𝐵

𝑖 𝑗
for

aligned users as the Attention key. Since h𝐵
𝑖 𝑗
does not exist for

unaligned users, and thus h𝐴
𝑖 𝑗
is the only reliable, query-aware

information we can utilize as the Attention key.
• Learnable Parameter: For unaligned users, to further mitigate
the cross-domain discrepancy incurred by h𝐴

𝑖 𝑗
, we introduce a

different learnable parameter matrix Φ to undertake the B-to-A
domain mapping, ensuring the domain consistency of attentive
correlation calculation. For aligned users, we also adopt a trans-
formation, but only for fine-grained in-domain feature adoption.

• Execution Party: The B-side attention process for aligned users
is conducted in-place in the passive party, while distributedly
executed for unaligned users. Specifically, the retrieval feature
matrix H̃𝐵

𝑖 𝑗
is firstly transformed in party B and then sent to party

A for subsequent attentive fusion.

4.2.3 Prediction. After we get the fused representation for re-
trieved samples, we together feed them with the query sample’s
representations to the top model to get the final prediction:

𝑦𝐴𝑖 𝑗 =

{
𝑔𝐴 ( [h𝐴𝑖 𝑗 ; r

𝐴
𝑖 𝑗
; ®0; r𝐵

𝑖 𝑗
]), ∀𝑖, 𝑗 ∈ U𝑎 × I𝐴

𝑔𝐴 ( [h𝐴𝑖 𝑗 ; r
𝐴
𝑖 𝑗
; h𝐵
𝑖 𝑗
; r𝐵
𝑖 𝑗
]), ∀𝑖, 𝑗 ∈ U𝑎𝑙 × I∪

(24)

In the end, we calculate loss L(𝑦𝐴, 𝑦𝐴) in the active party with
task-specific loss (e.g., cross-entropy loss for CTR task and mean
square error for rating regression tasks). Throughout the training,
we alternatively process unaligned and aligned data across epochs.

4.3 Practical Analysis

(1) {𝑡, Ũ𝑖
𝑎𝑙
} in retrieval are the only transmitted variables in the

whole retrieval process. Here the timestamp 𝑡 (usually at the date-
level or hour-level) is used to avoid the time-traverse problem and

Table 2: Statistics of all datasets and federated scenarios. y%

means the ratio of positive label.

Dataset Scenarios User Group #Users #Items #Samples|y%

Douban

book-movie unaligned 344 2,478 1,776|0.69
aligned 937 20,360 17,008|0.69

book-music unaligned 763 8,842 9,106|0.69
aligned 518 14,283 9,691|0.69

movie-book unaligned 1,254 5,776 23,190|0.59
aligned 1,234 15,200 26,378|0.57

movie-music unaligned 1,689 7,028 32,258|0.58
aligned 799 10,298 17,277|0.57

ML-1M

Task1 unaligned 1,551 1,301 7,736|0.64
aligned 2,529 3,460 58,554|0.57

Task2 unaligned 1,719 1,170 4,949|0.64
aligned 1,870 3,449 26,601|0.55

Task3 unaligned 1,401 1,179 4,248|0.65
aligned 2,536 3,477 43,700|0.58

Meituan
Search-B unaligned 337,733 4618 1,625,741|0.01

aligned 654,671 4772 2,382,273|0.02

Browse-S unaligned 340,755 4633 1,672,070|0.01
aligned 651,649 4763 2,335,944|0.02

conduct a time-related search in the retrieval process. Ũ𝑖
𝑎𝑙

are just
𝐾 user ID numbers from the aligned user set, which is common
knowledge between the two parties. All these two kinds of variables
do not violate privacy and only involve a small communication
burden (𝐾 + 1 scalar values). (2) {r𝐵,H𝐵} in modeling are the ad-
ditional communicated variables introduced by ReFer in modeling
process. They are isomorphic hidden vectors similar to h𝐵 , main-
taining the same privacy protection level. Considering a 1 : 1 ratio
of aligned and unaligned users, They only involve (𝐾 +1)/2 vectors’
communication burden. In a word, they maintain the same security
level and only involve a few communication burdens. (3) retrieval
efficiency The overall retrieval process only exhibits logarithmic
O(𝑙𝑜𝑔( |U|)) + O(𝑙𝑜𝑔( |I|)) time complexity, which is highly effi-
cient when dealing with millions of candidates. It is as efficient as
a typical matching sub-system in a standard recommender.

5 EXPERIMENTS

We conduct experiments aiming to answer the following questions:

• RQ1: How does ReFer perform compared to baselines?
• RQ2: How does ReFer perform on aligned/unaligned users?
• RQ3: How do different parts of ReFer contribute to the perfor-
mance?

5.1 Experimental Settings

5.1.1 Dataset. We conduct experiments on two public datasets
(Seq-VRec task) and one industry dataset (Attr-VRec task). Table
2. shows detailed statistics for all datasets. (1) ML1M-Fed. Us-
ing the original MovieLens1M dataset, we randomly divide it into
two halves to create two parties, based on the movie genres field



ReFer: Retrieval-Enhanced Vertical Federated Recommendation for Full Set User Benefit SIGIR ’24, July 14–18, 2024, Washington, DC, USA

(18 types in total). We generated three versions for party divi-
sion and named their corresponding learning tasks Task1 through
Task3. We follow [51] to transform the original rating data suitable
for CTR prediction task. The final data fields include {movie_id,
movie_cate_id, and rate_date} for the candidate movie and user-
rated movie sequence. We use a sliding window on the time-sorted
movie list of the user to generate samples. In each window, the
final movie is treated as the candidate while the preceding movies
are treated as historical behavior sequences. (2) Douban-Fed. The
Douban dataset [50] is a natural multi-domain rating dataset con-
taining 3 correlated item domains: movie, book, and music. We sim-
ulate 4 federated datasets by picking the 2 major domains movie and
book as the active party and the rest 2 minor domains as passive par-
ties. We preprocess raw data the same as ML1M-Fed to generate a
sequential ctr prediction dataset. (3) Meituan-Fed.Meituan dataset
is a click-through rate (CTR) dataset collected from a real-world
advertising platform. The dataset comprises transaction records
spanning nine days from Meituan platform2. It includes user pro-
files, item profiles, and two interaction domains: search actions and
rec actions. We organize attributes of "user profile + item profile +
search" into the Search domain, and attributes of rec actions into
the Rec domain.

5.1.2 Train & Test & Pool Splitting. For the two public datasets
(Seq-VFR setting), we use ratio segmentation [0.7|0.2|0.1] to split
user behavior sequences for training, validation, and test. We use
the training sequence as a retrieval pool for all parts of data and
only use samples that occur before the query sample to avoid time
traversing. For the meituan dataset (Attr-VFR setting), we use day
segmentation [2 ∼ 6|7|8] for training/validation/test set and use
day [𝑇 − 1|6|6] as retrieval pools for them to avoid future data
leakage. Specifically, for a certain day in training or test data, only
the past day’s data serves as the retrieval pool.

5.1.3 Evaluation Protocol. metrics: We use AUC and logloss
to measure the performance for the CTR prediction task. We eval-
uated all methods on the full user set, the aligned user set, and
the unaligned user set, respectively. For methods that originally ig-
nored the unaligned dataset (e.g., Fed), we employed hidden feature
zero-filling during inference to make them compatible.

5.1.4 Baselines. We set up six methods for comparison:
Basic Group: (1) Localmodel is trained solely on the active party’s
features, without incorporating any attributes from the passive
party. UN-Local and AL-Local are two variants of the Local model,
each utilizing data from only one user group: UN-Local pertains to
unaligned users, and AL-Local pertains to aligned users. (2) Fed
This is a VFL model trained on aligned records. It only covers the
aligned user set. (3) Fed-Fill This further exploits the active party’s
unaligned records, in which the missing fields of the passive party
are filled with zeros.
Advanced Group: (4) FTL [29] is an end-to-end FL method for
transferring knowledge to local samples. For shared samples, FTL
maps different parties’ raw features to a common feature space
for knowledge transfer. (5) FPD Two pioneer works [24, 36] have
adopted privileged distillation to achieve inference for all users.

2https://www.meituan.com

Here we collectively call them FPD methods. They learn a feder-
ated model on shared samples and then learn a local model (for
local samples) by considering both ground-truth labels and soft
labels produced by the federated model. (6) FedCVT [17] uses a
similarity function to generate unaligned samples’ hidden features.
It combines unlabeled unaligned samples and labeled aligned sam-
ples with semi-supervised learning in a co-training fashion. We
adopt it into our problem setting and re-implement it in a similar
approximate way as in [46].

5.1.5 ImplementationDetails. (1) retrieval: For public datasets,
we use leave-out historical rating data to train user embeddings.
For Meituan dataset, we use pre-trained common user embeddings
in Meituan platform. To simplify the experimentation process, we
pre-retrieved results for all records using FAISS [8, 16]. (2) model

structure: We use the same model structure for all datasets, where
bottom models use a 2-layer MLP with 64 → 32 units and the
top models use a 2-layer MLP with 𝑑𝑐𝑎𝑡 → 16 → 1 units. Here
𝑑𝑐𝑎𝑡 is the summed size of all vectors produced by bottom models.
Embedding dimensions for all fields are set to 10. (3) training: We
use Adam optimizer with 𝐿2 regularization to train models for 50
epochs, coupled with early stopping with a patience of 5 epochs.
Batch sizes for Meituan, ML-1M, and Douban are 10000, 1000, and
512 respectively. (4) hyper-parameter: Grid search is used to find
the best hyper-parameters, where 𝜂 ∈ {0.005, 0.001, 0.0005, 0.0001}
and 𝜆𝐿2 ∈ {0.01, 0.001, 0.0001}. Finally, we report the mean results
of the searched best hyper-parameter, under 3 random seeds.

5.2 Analysis on Different Baselines(RQ1)

Focusing on full user set performance shown in Table 3,ReFer out-
performs all baselines on full-user-set performance across both
metrics and all data scenarios, regardless of the significantly varied
data discrepancies, including aligned/unaligned user ratios, VFR
task types, and label ratios (as depicted in Table 2). For the aspect
of efficiency, we employ approximate MIPS algorithms (e.g., ALSH)
to achieve sub-linear time complexity. In our experiments, we use
GPU-accelerated FAISS [16] as the retrieval engine. It only takes
an average of 1.02ms for per 1000-sample bunch query for Top-5
retrieval with a 32-d embedding vector. This is efficient and feasible
in the industry RecSys. Compared to vanilla VFL, ReFer primarily
involves extra millisecond-level time consumption.

Besides, we get some key findings by analyzing basic baselines:
(1) Discarding unaligned samples significantly harms the per-

formance across the entire user set: Local outperforms Fed on
9/9 scenarios for AUC and 7/9 scenarios on Logloss. By additionally
observing Table 4 for that the AUC of aligned users on Fed is higher
than AL-Local in 8/9 scenarios except for Movie-Book, we can see
the extra fields are all useful. These two phenomenon jointly show
that the benefit of introducing extra B-side fields is less than the lost
benefit caused by neglecting unaligned samples. This significantly
identifies the importance of extending VFR to Fully-VFR setting. (2)
Naive 0-filling is not sufficient: Fed-Fill additionally uses B-side
fields compared to Local, but it still underperforms Local in 2/9
scenarios on AUC (-0.0014 on Book-Music and -0.0013 on Movie-
Book) and 2/9 on Logloss (+0.0009 on Movie-Book and +0.0002 on
Movie-Music). Despite the only cases on Movie-Book where the
B-side field is negative, there are still two cases showing Fed-Fill’s

https://www.meituan.com
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Table 3: Overall results on full user set. ReFer achieves the best result in all scenarios on both AUC and logloss(denoted as NLL).

The results are evaluated on full user sets. Green cells denote the best result and blue cells denote the secondary. “gap” denotes

the gap between ReFer and the best baseline.

Dataset Douban MovieLens Meituan

Scenario Book-Movie Book-Music Movie-Book Movie-Music Task1 Task2 Task3 Rec-Search Search-Rec
Method AUC NLL AUC NLL AUC NLL AUC NLL AUC NLL AUC NLL AUC NLL AUC NLL AUC NLL

UN-Local 0.6289 0.6011 0.6709 0.5865 0.7132 0.6431 0.7222 0.6192 0.7308 0.6149 0.7239 0.6241 0.7239 0.6074 0.5912 0.3628 0.6204 0.1627
AL-Local 0.6744 0.5948 0.6506 0.5835 0.7154 0.6260 0.6872 0.6427 0.7537 0.5780 0.7480 0.5813 0.7428 0.5782 0.6068 0.5084 0.6106 0.1676

Local 0.6784 0.5995 0.6818 0.5746 0.7350 0.6085 0.7256 0.6128 0.7584 0.5777 0.7545 0.5750 0.7493 0.5777 0.6182 0.1623 0.6305 0.1615
Fed 0.6532 0.5961 0.6534 0.5813 0.7109 0.6233 0.6843 0.6398 0.7547 0.5774 0.7401 0.5918 0.7303 0.6024 0.5376 0.1821 0.6001 0.1654

Fed-Fill 0.6795 0.5983 0.6804 0.5709 0.7337 0.6094 0.7263 0.6130 0.7641 0.5628 0.7545 0.5712 0.7505 0.5651 0.6413 0.1608 0.6439 0.1606

FTL 0.6179 0.6127 0.6296 0.6030 0.6948 0.6869 0.7034 0.6844 0.7081 0.6738 0.7172 0.6713 0.6792 0.6685 0.5913 0.1652 0.6018 0.1641
FPD 0.6823 0.5816 0.6828 0.5744 0.7405 0.6046 0.7319 0.5994 0.7615 0.5652 0.7565 0.5671 0.7498 0.5733 0.6184 0.1622 0.6321 0.1614

FedCVT 0.6818 0.5814 0.6738 0.5748 0.7374 0.5952 0.7268 0.6039 0.7590 0.5750 0.7544 0.5771 0.7509 0.5652 0.6187 0.1622 0.6316 0.1614

ReFer 0.6989 0.5673 0.6934 0.5629 0.7462 0.5916 0.7386 0.5934 0.7672 0.5581 0.7654 0.5637 0.7559 0.5610 0.6447 0.1606 0.6499 0.1602

gap* +0.0166 -0.0141 +0.0106 -0.0080 +0.0057 -0.0036 +0.0067 -0.0060 +0.0031 -0.0047 +0.0089 -0.0034 +0.0050 -0.0041 +0.0034 -0.0002 +0.0060 -0.0004

*
It is worth noting that an AUC increase of 0.001 can be considered a significant improvement in CTR prediction [14, 25, 39, 51]

Table 4: AUC results on aligned(AL) and unaligned(UL) users. ReFer achieves the best result in all scenarios in most cases.

Dataset Douban MovieLens Meituan

Scenario Book-Movie Book-Music Movie-Book Movie-Music Task1 Task2 Task3 Rec-Search Search-Rec
Method UL AL UL AL UL AL UL AL UL AL UL AL UL AL UL AL UL AL

UN-Local 0.6681 0.6092 0.6747 0.6705 0.7180 0.7081 0.7257 0.7143 0.7173 0.7360 0.7034 0.7357 0.7101 0.7274 0.6061 0.5988 0.6412 0.5976
AL-Local 0.6241 0.6893 0.6225 0.6929 0.7128 0.7183 0.6894 0.6845 0.7185 0.7734 0.7142 0.7682 0.7079 0.7592 0.6061 0.6075 0.6330 0.6108

Local 0.6547 0.6841 0.6770 0.6887 0.7379 0.7322 0.7310 0.7132 0.7311 0.7729 0.7255 0.7716 0.7215 0.7601 0.6152 0.6106 0.6441 0.6130
Fed 0.6282 0.6924 0.6231 0.6961 0.7094 0.7179 0.6904 0.6868 0.7164 0.7855 0.7084 0.7756 0.7041 0.7656 0.5880 0.6303 0.6237 0.6296

Fed-Fill 0.6547 0.6855 0.6777 0.6846 0.7363 0.7332 0.7308 0.7152 0.7250 0.7886 0.7200 0.7793 0.7146 0.7697 0.6380 0.6332 0.6518 0.6308

FTL 0.6516 0.6451 0.6529 0.6007 0.7068 0.6998 0.7108 0.7038 0.6868 0.7575 0.6971 0.7639 0.6698 0.7206 0.5953 0.6028 0.6260 0.5987
FPD 0.6564 0.6890 0.6755 0.6938 0.7433 0.7374 0.7372 0.7208 0.7282 0.7799 0.7246 0.7750 0.7207 0.7613 0.6156 0.6104 0.6445 0.6153
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Figure 5: Ablation study on augmentation mechanisms with varying 𝑘 . The heat map visualizes the value of AUC on the full

user set. We show one scenario per dataset due to page limitation.

drawback. This indicates that using zero-filling could not entirely
exploit the data advantage and may even incur a performance drop.
Thus, developing a tailored method for more efficient full-set data
utilization is necessary. (3) User group performance bias gener-

ally exists. There are 6 of 9 scenarios where AL-Local outperforms
UN-Local on full-set user AUC while 3 of 9 for the rest, indicating
the representative user group (who generalize better to all users)
varies in different scenarios.

For advanced baselines, we observe that: (1) Rigid feature align-
ment across heterogeneous domains is detrimental. Contrary
to Fed-Fill, FTL adds an extra loss term to directly minimize the dis-
crepancy between the representations of the two parties. However,
FTL consistently underperforms compared to Fed-Fill. This result

suggests that direct alignment is impractical in recommendation
systems. In our experiments, the data fields of the two parties nei-
ther overlap nor share the same item domain, demonstrating an
intrinsic significant discrepancy. (2) Distillation is effective but

suffers from field missing: FPD outperforms Local in all nine
cases, indicating its effectiveness in retaining transferred federated
knowledge. However, it underperforms compared to Fed-Fill in
four out of nine cases, suggesting that a performance drop may
occur when the shortage of field missing suppresses the benefit of
field information distillation. (3) Disentangled alignment and

feature imputation are beneficial but not consistently stable:
FedCVT significantly outperforms FTL and occasionally achieves
the best performance among all baselines (twice for Logloss and
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Table 5: Ablation study of full user set AUC on the decreased

volume of aligned users. ReFer consistently achieves better

performance than baseline methods on all ratios. Green cells

denote the best and bold font denote the secondary.

Movie-Book Movie-Music

align ratio Local Fed-Fill ReFer gap Local Fed-Fill ReFer gap

0.1 0.7240 0.7246 0.7340 +0.0094 0.7272 0.7275 0.7353 +0.0078
0.25 0.7274 0.7271 0.7421 +0.0147 0.7287 0.7287 0.7348 +0.0061
0.5 0.7331 0.7332 0.7414 +0.0082 0.7356 0.7354 0.7423 +0.0067
0.75 0.7335 0.7335 0.7392 +0.0057 0.7274 0.7276 0.7356 +0.0080

once for AUC). Given that FedCVT employs a more refined feature
alignment approach, similar to Domain Separation Networks [4],
and actively imputes missing B-side data in the hidden space, these
results are justified. The effectiveness of FedCVT’s feature impu-
tation module depends on the quality of feature disentanglement
and alignment. However, ensuring this representation quality is
quite challenging due to the heterogeneity and dynamicity of cross-
domain user interests in federated recommendation environments,
thus limiting FedCVT’s effectiveness.

5.3 Analysis on Different User Groups(RQ2)

Performance on distinct user groups As illustrated in Table 4,
we observed that ReFer achieves the best performance for both
user groups (in all cases for aligned users’ AUC and in 8 out of 9
cases for unaligned users’ AUC). Although ReFer is not optimal for
unaligned AUC in the case of Movielens-Task1, it remains the best
for the full-set user AUC. Such phenomena can occur and may stem
from the distribution bias between user groups (see Table 2 for cross-
group user ratio and rating sparsity), with aligned users’ advantage
intensifying performance disparities of two user groups. In the case
of Movielens-Task1, such a negative effect is also corroborated by
the performance of the top two baselines for aligned users

Furthermore, we can also observe in Table 4 that, under certain
data scenarios, Fed-Fill, FPD, and FedCVT also achieve a signifi-
cant performance lift over basic baselines for specific user groups.
However, due to the interest distribution bias and complex inter-
play between aligned and unaligned users, these baselines seldom
achieve simultaneous benefit dominance for both user groups.
This in return justifies ReFer’s advantage in achieving win-win
performance benefits for user sets.

Effects on decreased aligned users Since ReFer relies on the
aligned users to conduct cross-domain retrieval, we additionally in-
vestigate how aligned user’s volume affects ReFer performance. As
summarized in Table 5,ReFer works consistently well on varying
sizes of aligned users, maintaining its advantage of full-user-set
AUC on all data ratios. This indicates that the cross-RA mechanism
is robust to the size reduction of aligned users.

5.4 Components Ablation Study(RQ3)

Effects of Augmentation Mechanisms and Retrieval Size We
present the impact of two augmentation mechanisms on the AUC
metric for the full user set in Figure 5. We observe that: (1) For a
single mechanism, performance improves with increasing

k until it reaches an optimal value. Examining the heatmap

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

movie-book movie-music

Fed Local Fed-Fill ReFer

Figure 6: Ablation study on the distribution of training data

for the user retriever. ReFer consistently exhibits an advan-

tage over the baselines.

either horizontally or vertically reveals a general trend: both aug-
mentation mechanisms benefit from an increasing size of k, yet
the improvement plateaus beyond a certain point. Intuitively, too
few retrieval samples may lack sufficient information to aid the
prediction process, while too many retrieval samples may introduce
too many irrelevant noisy samples. (2) Combining both mech-

anisms further enhances performance. Despite the intricate
interplay between the two mechanisms, integrating them with an
appropriate retrieval size consistently yields the best performance,
confirming the effectiveness of both.

Effects of Different User Retrievers To showcase ReFer ’s
adaptability to diverse user embeddings, we trained an alterna-
tive user retriever on training dataset ratings, unlike the original
which utilized left-out historical data. That is, the new retriever
employs a different rating distribution to learn user similarity. The
results depicted in Figure 6 indicate that ReFer still outperforms
the baselines, by a substantial margin, highlighting its robustness
in retriever selection. The essence of an effective retriever lies in ac-
curately gauging cross-user similarity—a feature that is somewhat
consistent across various rating data. Such adaptability underscores
the practicality of ReFer in real-world applications, where a strong
pre-trained retriever can be reused in multiple downstream tasks,
reducing the burden of designing specific retrievers for each task.

6 CONCLUSION AND FUTUREWORK

In this paper, we introduce ReFer , the first retrieval-enhanced
VFL algorithm designed to address the narrowed data scope prob-
lem of vertical federated recommendation. We propose a general
“retrieve-and-utilization” framework to acquire enhanced represen-
tations for all parties, which results in improved performance. Our
experimental results demonstrate that ReFer can achieve significant
performance lifts on various datasets and tasks, revealing its po-
tential in real applications and further research. In future work, we
plan to explore new retrieval strategies and investigate the presence
of popularity bias in the retrieval process.
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