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I. INTRODUCTION

Recommendation systems are now ubiquitous, capturing
user behaviors across various service platforms that reflect
diverse user interests. Using this multi-platform data collec-
tively can achieve comprehensive user modeling. However,
intrinsic data isolation, privacy laws (GDPR [1]), and com-
mercial confidentiality make direct data sharing impossible, a
problem well-known as the “isolated data island problem”
[2]. To tackle this problem, vertical federated learning [3]–[6]
has been proposed and explored in various recommendation
tasks [7]–[11]. However, due to the necessity of conducting
cross-agency data intersection [12] before training and the
distributed nature of the split model, most of existing works
suffer from the following three challenges:
• (C1) Diminished Training Data Scope: Aligned users for

dissimilar businesses are often limited and constitute only a
small portion of the user population. This reduced training
set size can increase the risk of overfitting and result in low-
quality embeddings and hidden representations, especially in
sparse high-dimensional recommendation datasets.

• (C2) Limited User Group Benefits: The intrinsic field
missing in passive parties makes it infeasible for a federated
model to train on or make predictions for unaligned users.
Thus, vanilla VFL can only bring benefits to aligned users,
largely undermining the practicability of VFL. If a partici-
pant has more unaligned users, or places greater emphasis
on unaligned users in their business, joining the federation
is not cost-effective.

• (C3) Costly Federated Inference: The inference process
of VFL models incurs extra time costs (due to cross-
agency feature transmission and security enhancement op-
erations) and poses new system design challenges (arising
from inconsistent network conditions and computational
capabilities of different parties). These challenges make it
difficult for a federated inference system to meet the high
throughput and real-time latency requirements of advertising
systems (million-wise peak QPS, 100∼100ms processing
time per request [13], [14]). These obstacles may render the
federation infeasible or excessively costly for participants.

Our Contribution To address these challenges, we have
integrated cutting-edge machine learning techniques such as
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self-supervised learning [15], privileged distillation [16], and
retrieval augmentation [17], all tailored for recommendation
systems under a VFL setting, to enhance VFL’s practicality.
Our methods show encouraging outcomes on both public and
industry datasets.
Basic Learning Framework We focus on the two-party VFL
setting [5], [6], where an active party A, holding the labels
and some attributes, collaborates with a passive party B, who
provides additional attributes to train a distributed federated
model for a specific task. The federated model consists of the
bottom model held by each party and the top model held by the
active party: ŷfed = gA(fA(xA), fB(xB)). where f denotes
the bottom model and g denotes the top model, x denotes
inputs from parties. More details can be found in [15].

II. PROGRESS A: EXTENDING DATA SCOPE WITH
SELF-SUPERVISED LEARNING
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Fig. 2. The overall framework of VFL-MPD.

This work aims to tackle challenge (C1). We argue that
massive historical records with outdated labels [18] in adver-
tising systems could be useful for representation learning. By
incorporating these massive unlabeled data in VFL, we can
compensate for the shortage of overlapped data.



Therefore, we developed the first VFL-tailored self-
supervised task, matched pair detection (MPD), to utilize
these unlabeled data. We use MPD to learn a pre-training
splitNN model and employ its bottom model to initialize
downstream task models. Intuitively, the MPD task is to
learn a binary classifier to distinguish whether input attributes
from two parties match. All original overlapped samples are
positive samples, and we construct the negatives by frequency-
based random sampling [19]. MPD has a intrinsic connection
to maximizing mutual information, that is:gA(hA,hB) =
PMI(xA,xB) − log k. This reveals that the top model im-
plicitly models the point-wise mutual information (PMI) of
the observed input pairs, with a shifted constant log k. Such
a learning principle strongly supports the MPD pre-training
task in learning effective cross-party representations. Our
experiments, conducted on two industry datasets from Tencent
and one simulated public dataset, validate MPD’s superiority,
with a 2 to 10 thousandths AUC improvement compared to
naive self-training.

III. PROGRESS B: REDUCING INFERENCE COST WITH
PRIVILEGED DISTILLATION
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Fig. 3. The overview of the joint privileged learning framework.

In order to jointly tackle challenges (C1)–(C3), we in-
vestigate a lightweight and practical problem setting, Semi-
VFL (Vertical Semi-Federated Learning), which utilizes the
full sample set during training and achieves standalone local
inference. It is a relaxed setting where the active party cannot
achieve real-time inference for distributed models but can for
local models. There are two key challenges to achieving Semi-
VFL: 1) effective passive party fields-free inference and 2)
integrating distribution bias between overlapped and non-
overlapped sets. To address these challenges, we propose the
two-stage Joint Privileged Learning framework (JPL). The
first stage is federated teacher training, extracting knowledge
from the full attribute set on overlapped data. The second stage
is joint privileged distillation, where the model jointly uses
all data to learn an input-restricted student model aimed at
efficient local serving. Specifically, JPL consists of learning
components and objectives:
• Learning components: The model is composed of multiple

classifier heads and a cross-domain feature encoder. The
former is responsible for capturing discriminative patterns

from different input signals (e.g., from a-side only, b-
side only, or both). The latter is designed to learn cross-
party feature correlations, thus alleviating the field missing
problem in the inference stage.

• Learning objectives: In terms of tackling field missing,
we adopt a prediction-based Discrimination Equivalence
and contrastive-based Feature Equivalence on the cross-
party feature encoder. For cross-set bias, we use multi-head
ranking consistency regularization and multi-head Diversity
Ensembling. Readers can refer to [16] for more details.
As a consequence, JPL consistently outperforms basic feder-

ated distillation approaches [15], [20] on various data settings
on two public Click-Through Rate (CTR) prediction datasets.

IV. PROGRESS C: ACHIEVING FULL SET USER BENEFIT
WITH RETRIEVAL AUGMENTATION
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Fig. 4. The overall framework of ReFer.

In order to tackle challenges (C1) and (C2), we propose
a retrieval-enhanced approach named ReFer (as depicted in
Figure 4). We focus on the Fully Vertical Federated Recom-
mendation (Fully-VFR) problem, which is similar to Semi-
VFL but assumes that participants are capable of conducting
online federated serving. The design of ReFer revolves around
achieving two types of retrieval augmentation (RA) strategies
in a distributed and privacy-preserving manner: 1) cross-party
RA for field missing and 2) in-local RA to mitigate cross-
group user bias. Specifically, ReFer is two-staged:
• Federated Retrieval Augmentation: We design a federated

retriever that enhances each active party’s sample with K
relevant samples from both parties. The retriever is designed
hierarchically with a two-stage user-item structure to ensure
privacy and efficiency in the VFL environment.

• Federated Retrieval Utilization: The fusion modeling pro-
cess learns a retrieval-oriented fusion representation for the
query sample and uses it to promote better predictions.

As a result, experiments on both sequential and non-sequential
CTR prediction tasks show that ReFer achieves the best AUC
performance over baselines in 9 VFL scenarios and is benefi-
cial for all user groups.



V. FUTURE DIRECTIONS

In the future, we plan to further extend this work to more
types of recommendation scenarios, exploring the possibility
of combining it with generative recommendation models and
large language models (LLMs), and to further investigate their
security and privacy concerns.
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